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- “Landau Fluid” equations are fluid moment equations which
are fruncated with closure terms incorporating kinetic effects

— Landau damping (linear), Toroidal drift resonance...

« “Gyro-Landau Fluid” or “Gyrofluid” equations are fluid
moments of the 5D gyrokinetic equation, closed so as to
maintain FLR and kinetic effects

— Landau damping, linear and nonlinear FLR, toroidal drifts and
drift resonance, trapping

— Able to accurately reproduce linear GK physics, and provide
reasonable agreement with nonlinear GK simulations, while
being much more efficient

— Eg: GRYFFIN (Beer, Dorland, Hammett, Snyder) and Waltz GLF
simulation codes, GLF23 and TGLF linear models
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Comparison of Gyrofluid and Traditional

MHD-like 2-fluid Equations

e GF: Moments of 5D GK eqn rather than 6D K eqgn

— Fast timescales and short scale lenaths eliminated before
moments are taken " Aq ~ G pebaegl,  kpel,
 GF: Moments taken in gyro-center space
— Gyro-viscous cancellation natural, algebra easier
 GF: Closures derived by matching to linear kinetic
response, rather than high collisionality
— Can accurately reproduce kinetic physics in both low and
high collisionality limits
 GF: FLR and closure terms take a form which can be
efficiently evaluated in k-space

— Much more challenging to evaluate in x-space
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Deriving Gyrofluid Equations

e Start with GK ean: OF o (B4 ve+ve)-VF

ot
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Velocity space moments are often defined in terms of the total distribution 0 Fy aF, uB
function F. Here we again separate F into equilibrium and fluctuating components — . ¥ O_BJHQ] m IIUOTB L = 02 - )V, InB
F = Fy + f.¥ Velocity space moments of e 6 I A L af
+ “Joa, Joe(b x VA} - V¢ — uB* .~V , InB
o 292 B a3 m ov v
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are all well defined. We define the following moments of the fluctuating distribution:
fi = ffd"‘v noil, = ffz d*v
pr=m [ ful d p.=m[ fBud® Closure of high moments (3+1 or
= —3my{moit, +m [ fo’d®v = —mvlngii, +m [ fBuv, dv 4+2) preserves particle, momentum
- S -,"'d"~f = ’B v? Py .
Fumm[fide o Pusm[iBedidv o and energy conservation
Fo.o=m/[ B d® 5. = —2mylngit, + m [ fBpPv, v
5, = —1omuingit, + m [ fo'd®v 5, = -3mungi, +m [ fBuv’ &,
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Deriving Closure Terms

 Closures needed for FLR, parallel, toroidal drift and
mirror terms

. . - . .- _ A O N - . . . - N .
. As an illustration, consider the one dimensional kinetic eguation
* Landav damping:

d af S m g s 2 74\
a‘: + v aﬁ = §(t) fo(z,v), (3.74]

Nothing is really damped in
Landau damping.

where f; provides the initial condition. The solution to this simple eguation

o flz.v,t) = folz — vt v)H(t), provides Green's function which can be used to
Plase mMIXing Moves solve more general problems with additional source terms, such as the electric field
fluctuations to fine scales in ~(e/m)E, %5, Consider an initial condition with a small single harmonic pertur-
VvV space. bation fy = (ng+n; %) Fy(v). The general solution is just (ng+n,e™ ="}, which
Once at small scales we simply oscillates in time at w = kv and does not damp. However, upon taking ve-

locity space moments, the velocity integration introduces mixing of the phases as

assume they are damped

o follows:
by collisions. Good "
assumption for turbulence, n(z,t) = / fdv=ny+n f2 : / dy ™Rty /2), (3.75)
: Vv 2muy
not so good for special
cases like p| asma echo The perturbed density n; = nj g€ MU decays with a Gaussian time depen-

dence. This decay due to linear Landau damping is not captured by a simple fluid
model with a finite number of moments, and hence it must be accounted for in the

fluid closure if it is to be included in a fluid model.
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Deriving Closure Terms: Practice

‘iﬂn . , \ Blnﬂ [ ’1' (% , \
("Ab RI..C.Q l — o b 7{'-}:.‘}

Kinetic linear response: " i1, "B 1,

where {; = w//2|k.|v,, is the normalized frequency, and R((,) = 1 + {Z((,)

* GF closure form: ot = 308, (201, — Toom) = comond, T, — VED ol
D’ s determined by
matching Kresponsein . -, +v2p. o2 70n voDu, hu
small and large z limit

The density response is then:

in vme sy Bima [ Tig .
s = — k_.'z'l,f“b Ra((s) + b‘.-.l -1 ~ 1 Ra(Cs) (C.36)

where R4((,) is a four-pole model of the electrostatic response function R({,):

4 - 2i/n(, + (8 — 3n)(?
4 — 6iy/7w(, + (16 — 97)(? + 4i /7 (3 + (67 — 16)¢F

Ra((s) =
(C.37)
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Accurately reproduces kinetic response

and linear growth rates

kinetic
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Figure C.3: Linear growth rate of the mirror instability (k? > kﬁ) as predicted
by kinetic theory, 3+1 and 4+2 Landau MHD models, and CGL theory (ideal
MHD cannot predict the mirror growth rate as it posits an isotropic pressure).
The normalized growth rate ({ = | m(w)/ §|k”|vT i) is plotted versus the temper-
ature anisotropy (T (/T ,) at constant B = {(2/3)p , + (1/3)p,,}/(B§/8m). The
parameters chosenare Z = 1, T =T g Tjoi = Tjper B = 1and \/m;/m = 40.
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Adding FLR, Toroidal Drift & Mirror Closures gives

final EM Gyrofluid equations

Toroidal Ion Gyvrofluid Equations

e
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dwa(=q = ¢ )+ lwal{osy + voq + vioq) = —vaq

where ¥ =T =hx VA4 - T, va=h = T4, 4 =74,
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n, = n; — "\l - ln]C)

VA =~

Can simplify for special cases,
eg low mass electrons:

on,

n

_ o Ui, N A a2 £ 4 v o
at +vgVn, + BV g’ — iw.¢ + 2iwy(o — P T,) =0,
- 1 [ m,. . | m.
# V10— =V ine = Siw A = [Ty, = v (g, - uy,),
T T \' 2r my ' mi " .

e = ——w.Ay.



Adding FLR, Toroidal Drift & Mirror Closures allows

accvurate tfreatment of GK drift modes

Linear Toroidal ITG Growth Rates

Comparison with M. Kotschenreuther's GK Code 06 KBM grad T 0
0.5 j 0'45_
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as well as kinetic ballooning mode 5 oaf
instability Pt
— KBM unstable below ideal threshold f
when temperature gradient is finite %

a=168 B
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GF Equations used in NL flux tube
simulations of EM drift modes

* Small reduction in flux at low betaq, then increase as KBM
threshold approached

— Character of turbulence changes, B field stochastic, near KBM limit
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Comparison of Methods for Solving GK Egn

e GK Eulerian or Continuum methods (eg GS2, GYRO, GENE)

— Grid v space and directly solve 5D equation

— Can choose v space coords and grid for efficiency

— Collisions straightforward to implement in principle, no noise issue
* Particle-in-Cell (eg GTC/GTS, Parker’ s GEM...)

— Use markers (sometimes called superparticles or particles) to
resolve velocity space in Monte-Carlo-like fashion

— Relatively straightforward to code and scale, can get good v-
space resolution via time averaging

— Noise issues, and challenging to implement realistic collisions
e Gyrofluid

— Take ~6 moments of GK egn, kinetic closures, conservative

— Moments are v-space grid, ~10-100 fimes more efficient

— Nonlinear kinetic damping not treated

— Some closures artificially damp R-H zonal flow, correctable problem
e Myth: this is source of IFS-PPPL controversy; Reality: relatively small effect
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Issues for GF in edge turbulence and ELM

problems

 Small perturbations assumed in closure derivation
* Need exiension to full B, kink term

 Much of GF efficiency comes from flux tube, k-
space

— Closure terms become intfegral operators in real space
e Efficient evaluation is challenging
e Simplification (eg localization or Scott constant method)

\ 2\ 3 * T (z2+2)-T,(2—2)
q _-J:L"II = T ( ) Vs, / dz s ) ' )
% A i
9= "M vy, | d2gld) |T,(2+2) T (2-2)
. n 0 S 4 s\ J

nov;, ik T, ' T novy, T ok B
Qs = "7 w1 =t - m T . .
1is (./=lk v, +v,) 1 Bol( =k vy, + v,) , P & .
\V 2 s J (s Vo2 s / g(z) = / d}”’,'i lSi!IU&‘f;
JO > -+

ik T,
‘(VBar|k,|vey, + (31 — B)ws)

q,, = —8ngy,
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Discussion

e Principal advantage of GF eqgs is their efficiency and ability to
incorporate collisionless damping

— Also relatively easy to work with and simplify in various limits
— Generally well behaved numerically, conservative
— Easier than GK to interpret results
— Right compromise between accuracy and efficiency?¢

« Weakness relative to direct GK is additional simplifications
— No nonlinear Landau damping, drift res not exact
— One model is GF/GK working in tandem for efficiency

« Weakness relative to Braginskii-like eqs is presence of closure
terms which are non-local in real space

— Braginskii assumes very high collisionality (and can be poorly
behaved at low collisionality). GF assumes GK ordering is valid.
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e Exira slides
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Some generalization required for MHD-like

problems

() Need ‘I'o qvoid The gyrocenter velocity is then given by
° ege / \
simplified X =u b+ By vetv, 33)
oy [ ]
eq Ulllbrl U m ’ keep where the angular brackets denote gyroangle averages. The first term on the right
fU" B p er.I.U rbq.l.i on represents free streaming along the total magnetic field. The second term is the

gyroaveraged E x B drift velocity, v = 5bx V {¢). vq is the combined curvature
R ]
a nd klnk 'I'erm and VB drift velocity. In general, v, can be written

Vi = l; . l.) » (5. ‘.‘ B) + Q‘}Il-) X ;' B l:3'4]
= v tu BxVEB+ i bx(VxBxB)
x V g x 4 X .
QB QB "

Using the equilibrium relations Vp = 1JxB and VxB = "I—_’J, this can be written

B V- + ﬂBB oB v*
ap: - VPt o

\L b x Vp. (3.5)

The second term on the right is small for 3 < 1.” and is neglected here for simplicity

and to maintain consistency with neglecting 6 3,.* The definition

v+ uB
0 B?
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Vi= B x VB (3.6)



